
Remote Sens. 2011, 3, 1568-1583; doi:10.3390/rs3081568 
 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 
Article 

Identification of Mangrove Areas by Remote Sensing: The ROC 
Curve Technique Applied to the Northwestern Mexico Coastal 
Zone Using Landsat Imagery 

Luis C. Alatorre 1,2,*, Raquel Sánchez-Andrés 3, Santos Cirujano 3, Santiago Beguería 4 and 
Salvador Sánchez-Carrillo 5 

1 División Multidisciplinaría de la UACJ en Cuauhtémoc, Universidad Autónoma de Ciudad Juárez 
(UACJ), Calle Morelos y privada del Roble núm. 101, Fracc. El Roble, C.P. 31579, Cuauhtémoc, 
Chihuahua, México 

2 Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Zaragoza 50080, 
Spain 

3 Real Jardín Botánico, Consejo Superior de Investigaciones Científicas, Madrid 28014, Spain;  
E-Mails: rsanchez@rjb.csic.es (R.S.-A.); santos@rjb.csic.es (S.C.)  

4 Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas,  
Zaragoza 50059, Spain; E-Mail: sbegueria@eead.csic.es  

5 Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas,  
Madrid 28006, Spain; E-Mail: sanchez.carrillo@mncn.csic.es  

* Author to whom correspondence should be addressed; E-Mail: luis.alatorre@uacj.mx;  
Tel.: +625-112-17-19; Fax: +625-112-17-19. 

Received: 27 April 2011; in revised form: 5 July 2011 / Accepted: 8 July 2011 /  
Published: 25 July 2011  
 

Abstract: In remote sensing, traditional methodologies for image classification consider 
the spectral values of a pixel in different image bands. More recently, classification 
methods have used neighboring pixels to provide more information. In the present study, 
we used these more advanced techniques to discriminate between mangrove and 
non-mangrove regions in the Gulf of California of northwestern Mexico. A maximum 
likelihood algorithm was used to obtain a spectral distance map of the vegetation signature 
characteristic of mangrove areas. Receiver operating characteristic (ROC) curve analysis 
was applied to this map to improve classification. Two classification thresholds were set to 
determine mangrove and non-mangrove areas, and two performance statistics (sensitivity 
and specificity) were calculated to express the uncertainty (errors of omission and 
commission) associated with the two maps. The surface area of the mangrove category 
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obtained by maximum likelihood classification was slightly higher than that obtained from 
the land cover map generated by the ROC curve, but with the difference of these areas to 
have a high level of accuracy in the prediction of the model. This suggests a considerable 
degree of uncertainty in the spectral signatures of pixels that distinguish mangrove forest 
from other land cover categories. 

Keywords: remote sensing; maximum likelihood algorithm; curve ROC; mangrove; 
sensitivity/specificity; Gulf of California 

 

1. Introduction 

Wetlands are valuable ecosystems because they support significant biological diversity and also 
serve as sources, sinks, and transformers of numerous chemical and biological substances [1]. 
Mangrove wetlands, which dominate coastal areas of subtropical and tropical regions, are regarded as 
analogous to tropical rain forests. Both of these ecosystems show significant habitat diversity and 
ecosystem productivity, and often enhance marine coastal productivity by nutrient export [2].  

Mangroves provide tidal control [3], shoreline stabilization [4,5], and serve as habitats for coastal 
fish and wildlife communities [6,7]. In addition, in many undeveloped and developing countries, 
mangrove trees are important sources of wood for cooking and heating and for building houses, huts, 
and fences. Mangrove leaves are used to make matting and the wood is additionally employed as 
scaffolding. Mangroves also often have significant cultural and medicinal values [8,9].  

Unfortunately, there is an alarming global decline in mangrove ecosystems because of population 
growth, global warming, aquaculture, and industrial and urban development [10-13]. As a result of the 
monetary costs associated with the loss of mangrove ecosystems, policymakers are becoming 
increasingly aware of the need to incorporate new methods to quickly and accurately assess changes in 
mangrove forest cover. Such efforts are intended to improve integrated coastal zone management, a 
process initiated at the 1992 Earth Summit [14]. According to the most recent mangrove resource 
assessment, about 170,000 km2 of mangrove ecosystems remain worldwide, and an average of about 
1,030 km2 per year was lost from 1990 to 2000 [15].  

Methods for determining the extent and spatial distribution of mangrove forests have improved over 
time because of advances in technologies such as remote sensing (RS), global positioning systems 
(GPS), and geographic information systems (GIS). RS is a powerful tool for analyzing estuaries and 
coastal systems and is ideal for monitoring the spatial and temporal evolution of the mangrove 
ecosystems because it is cost-effective, time-efficient, and non-invasive. It allows for a high intensity 
of measurements in relatively inaccessible and sensitive sites. Data from multispectral satellite sensors 
such as SPOT (Système Pour l’Observation de la Terre), the Landsat Thematic Mapper (TM), and the 
Enhanced Thematic Mapper Plus (ETM+) provide useful sources of remotely-sensed data and readily 
allow discrimination of mangrove from adjacent non-mangrove regions [16-19].  

In particular, multi-band spectral data (typically red and near-infrared [NIR] wavelengths) can be 
used to identify vegetation based on spectral reflectance. Remotely sensed spectral differences 
correlate with biophysical properties of the mangrove canopy. In particular, numerous studies have 
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shown that mangrove normalized difference vegetation index (NDVI) values correlate with biomass, 
canopy cover, and leaf area index (LAI) [20-25]. Other studies have utilized RS data to analyze the 
relationship between changes in coastal land use and mangrove distribution [26-32] and to characterize 
changes in wetland vegetation with alterations in areal coverage [33,34]. In general, most mangrove 
studies have focused on the biology and ecology of mangroves, and on factors that influence 
productivity, biodiversity, and geographical distribution [35].  

Mexico has suffered significant mangrove deforestation since 1980 because of growth in 
aquaculture [36]. Mexico is estimated to have suffered a 2.1% annual loss of mangroves from  
1990–2000, just below that of the USA (2.4%) and Nicaragua (2.8%), but far less than seen in Haiti, 
Barbados, and Honduras, where deforestation rates are greater than 4% annually. Recent data reported 
by the FAO (Food and Agriculture Organization of the United Nations), based on numerous sources, 
showed that Mexico had the highest rate of mangrove deforestation in the Middle American region, 
with losses of more than 100 km2 per year [11]. Several studies commencing in the mid-1990s used 
satellite images to estimate the spatial extent of mangroves in Mexico, but the results remain 
controversial because of methodological problems [11]. The National Forest Inventory of 2000 (INF-
2000) standardized RS techniques and implemented partial verification methods to increase the 
accuracy of cover type estimates. However, INF-2000 did not consider mangrove forests, so the extent 
of changes in mangrove ecosystems remains controversial [11]. 

Estimates of mangrove cover by use of RS have been performed only in a few local regions, mainly 
in northwestern Mexico [37]. Only a small number of studies have assessed the spatial distribution of 
mangrove forests at the regional level (100–10,000 km2), because of lack of field verification.  

The aim of the present study was to use recently developed RS technologies to determine the  
extent of mangrove forest coverage. Our methods involved traditional RS techniques (supervised 
classification), the implementation of a Receiver Operating Characteristic (ROC) curve to select a 
classification threshold, and assessment of uncertainties associated with our predictions. This approach 
has been successfully used in a badlands landscape in the Ésera River catchment (Spanish Pyrenees) to 
identify areas with erosion and areas at risk of erosion following small changes in the nature and 
amount of vegetation cover [38]. Mangrove forest degradation can commence as a self-thinning 
process [39], and our methods thus sought to detect areas where vegetation cover had diminished. 
Ultimately, our techniques could be used to construct large-scale national forest inventories and to 
assess changes in mangrove ecosystems over time. 

2. Study Area 

This study was performed in northwestern Mexico, along a 509 km stretch of the eastern coast of 
the Gulf of California (Figure 1), an area of about 5,000 km2. This region includes mangrove wetlands 
associated with the Quaternary progradation deltas of the Yaqui, Mayo, and Fuerte Rivers and is the 
largest wetland extension of the Mexican northwest. The climate of the area is warm and dry, with a 
mean annual temperature of 24 °C (range 16–48 °C) and rainfall is less than 300 mm y−1. 
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Figure 1. Location of the study area (a composite of four Landsat scenes). Inset: location 
of mangrove communities in the Gulf of California. 

 

Mangrove wetlands are mainly mixed stands of Rhizophora mangle, Avicennia germinans, and 
Laguncularia racemosa. Rhizophora mangle is principally restricted to the shoreline areas of lagoons 
and occurs in association with patches of pickleweed (Salicornia virginica and Batis maritima) in 
small and very shallow pools. Most mangrove wetlands are surrounded by shrimp farms, which are 
believed to have significantly modified or destroyed mangrove forests since 1985 [2]. Such farms are 
the main commercial activity in this area, because ocean fisheries have been severely overexploited. 

3. Data and Methods 

3.1. Data Selection and Preparation 

Satellite images can be adversely affected by radiometric interference from solar radiation and 
particular atmospheric conditions. In images with high temporal and low spatial resolution (e.g., 
NOAA-AVHRR), this problem is usually resolved by the use of multi-temporal compound images and 
filtration. In the case of images with low temporal frequency (e.g., Landsat), it is necessary to use more 
complex correction methodologies.  

In this study we employed a database of Landsat ETM+ (30-m spatial resolution) from October 
2001 (corresponding to late “summer” in our study region) because of the low cloud cover during this 
month (Figure 1). Table 1 shows the dates of the images used in each time series. The images were 
geometrically corrected using control points and the algorithm developed by Palá and Pons [40] 
implemented in the Miramon software. This procedure controls for topographic distortion by 
employing a digital terrain model (DTM), database of the INEGI (National Institute of Statistic and 
Geography), with 30 m spatial resolution [41]. 
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Table 1. Dates of the Landsat ETM+ images used in the present study. 

   Coordinates UTM 12n 
Date Sensor Path/Row Xmin/Xmax Ymin/Ymax 

26/09/2004 ETM+ 35/41 378836/627698 2925339/3143530 
26/10/2004 ETM+ 34/41 532793/776867 2927049/3143763 
08/10/2004 ETM+ 34/42 608574/710205 2809971/2974131 
14/10/2004 ETM+ 33/42 667113/788780 2783238/2853662 

Atmospheric effects were corrected by use of the radiative transfer code 6S [42], described in detail 
by Vicente-Serrano and colleagues [43]. Areas affected by clouds in corrected images were identified 
by visual inspection and were eliminated by mean of manual digitalization of these areas. 

3.2. Classification Procedure 

3.2.1. Definition of the Thematic Categories and Training Areas 

An important objective was to define areas of Landsat images that represented thematic categories 
as determined by maximal spectral heterogeneity. Thus, to identify mangrove areas, it was necessary 
for the classification algorithm to establish a priori categories that adequately represented the 
variability of land cover types in the study area. Our maximum likelihood algorithm considers the 
average characteristics of the spectral signature of each category and the covariance among all 
categories, thus allowing for precise discrimination of categories. 

Figure 2. Training samples used to establish thematic categories, and to select training areas 
for each category, in accordance with the criteria proposed by Cintron et al. [44]: 
(i) mangrove forest; (ii) mangrove forest with pickleweed; (iii) pickleweed; (iv) scattered 
vegetation; (v) bare soil; (vi) very shallow water; and (vii) open water. 
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Field observations and training samples were used to establish thematic categories, and to select 
training areas for each category. The structure of mangrove forests and the other categories were 
obtained using random sample points, field transects and equidistant 10 m2 plots around the 
experimental sites, in accordance with the criteria proposed by Cintron et al. [44] (Figure 2). A 
spectral signature and contingency matrix generated using ERDAS 8.7 software were used to 
determine the extent of discrimination among categories. 

3.2.2. Image Classification and Validation 

Image classification was based on the maximum likelihood method, employing the set of thematic 
categories. The discriminatory capacity of the classification model was determined by the use of a 
confusion matrix established with the training samples. After verification of such samples, a spectral 
distance map was obtained for the mangrove category. This map represents the distance between the 
spectral signature of each pixel and that of the mangrove category, and considers the variance-covariance 
matrix of all spectral signatures.  

Based on the spectral distance map, maps of mangrove and non-mangrove areas were prepared by 
the establishment of a classification threshold. Determination of the classification threshold for 
construction of the map was based on the ROC curve, a method derived from signal detection theory, 
that has been widely used in environmental sciences [38,45-46]. The ROC curve for each classification 
is determined by calculating the sensitivity and specificity: 

ca
aysensitivit
+

=  (1) 

db
dyspecificit
+

=  (2) 

where a represents true positives, d true negatives, b false positives, and c false negatives (Table 2). 

Table 2. Confusion matrix, with Y1 belonging to class Y, and Y0 not belonging to class Y.  
a represents true positives; d represents true negatives; b represents false positives (type I 
error); and c represents false negatives (type II error). 

  Observed 
  Y1 Y0 

Predicted Y’1 a b 
 Y’0 c d 

The sensitivity of the model is the proportion of positive pixels correctly predicted, (i.e., the 
probability that a pixel belonging to a particular category is correctly identified). The specificity of the 
model is the proportion of negative pixels correctly predicted (i.e., the probability that a pixel not 
belonging to a particular category is correctly identified). Thus, models with high sensitivity can 
correctly predict positive pixels (pixels belonging to the category of interest) and models with high 
specificity can correctly predict negative pixels (pixels not belonging to the category of interest). High 
sensitivity is usually associated with poor specificity, which manifests as an overestimate of area in the 
category of interest.  
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The sensitivity and specificity provide information on the degree of uncertainty in a classification. 
In other words, “1-sensitivity” and “1-specificity” represent the probabilities of committing an error of 
omission (type II error, or false negative) or an error of commission (type I error, or false positive), 
respectively (Table 2). Other common statistics of the classification model, such as the overall 
reliability,  

dcba
dayreliabilit

+++
+=  (3) 

are biased estimates that depend on the proportion of pixels actually belonging to each class, and 
therefore should not be used for comparison between different case studies (see [38]). 

An optimum classification model would be one with the highest possible value of both sensitivity 
and specificity, minimizing omission and commission errors at the same time. Since this ideal situation 
is usually not the case, there is a need to make a compromise, and the ROC curve is the optimum tool 
to make such a choice [47,48]. The ROC curve method provides a way to select an optimal model and 
to discard suboptimal ones independently from the class distribution, based on the uncertainty 
associated with a specific classification threshold. The sensitivity and specificity pair allows the 
practitioner to balance the risk associated to both types of errors—omission and commission—for a 
given classification threshold, and thus choose the most appropriate model for a given application. In 
this case, for identification of the mangrove areas, a classification threshold was set as the spectral 
distance for which the sensitivity of the model was 0.9, corresponding to a 10% probability of an 
omission error. For identification of non-mangrove areas, a classification threshold was set as the 
spectral distance for which the omission and commission errors were approximately equal (about 
25%). These values were chosen arbitrarily as an example, and other values could be equally valid. 
What is important is that the ROC curve analysis can be used to explicitly estimate the omission and 
commission errors associated to the classification model, thus allowing choosing the classification 
threshold according to the risks associated to both errors. 

4. Results and Discussion 

4.1. Selection of Categories and Training Areas 

The definition of thematic categories and selection of training areas were based on field 
observations and training samples (Figure 2). There were seven thematic categories: mangrove forest, 
mangrove forest with pickleweed, pickleweed, scattered vegetation, bare soil, very shallow water, and 
open water. The training areas were used to obtain spectral signatures for each thematic category 
(Figure 3). Bare soils had high signals in all spectral bands, and relatively large variability within each 
band. In contrast, open water had the lowest average reflectivity. 

Discrimination of the different spectral signatures was good for all categories. Bands 3 and 4 were 
very important in discrimination of vegetation. For vegetated areas, radiation in ETM+ band 3  
(0.58–0.68 µm) is strongly absorbed by chlorophyll, whereas radiation in ETM+ band 4 (0.73 to  
1.10 µm) is strongly reflected [35,49]. Thus, mangrove forests have the highest values in band 4 and 
the lowest values in band 3. 
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Figure 3. Spectral signature of each thematic class. Vertical bars indicate standard 
deviations of average reflectivity. 

 

Table 3. Contingency matrix of the classification algorithm, applied to the training sample 
(proportion and total number of pixels of the class sample). 

  Observed 
categories 

Mangrove 
forest 

Mangrove 
forest with 
pickleweed 

Pickleweed Scattered 
vegetation 

Bare 
soil 

Very 
shallow 

water area 

Open 
water 
area 

Total 
(pixels)   

Pr
ed

ic
te

d 
ca

te
go

rie
s 

Mangrove forest 0.81 0.12 0.07 0.00 0.00 0.00 0.00 864 
Mangrove forest 
with pickleweed 

0.10 0.78 0.15 0.04 0.00 0.00 0.00 551 

Pickleweed 0.07 0.05 0.75 0.08 0.03 0.00 0.00 566 
Scattered 
vegetation 

0.00 0.02 0.01 0.79 0.06 0.00 0.00 749 

Bare soil 0.00 0.01 0.00 0.09 0.91 0.05 0.01 1,589 
Very shallow 
water area 

0.01 0.01 0.01 0.00 00.0 0.83 0.04 465 

Open water area 0.01 0.01 0.01 0.00 0.00 0.12 0.95 3,349 

The contingency matrix obtained for the sampling areas, based on the maximum likelihood 
classification algorithm, showed that all categories had a 75% success rate (Table 3). For mangrove 
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areas, confusion levels of 10% and 7% were found for mangrove forest with pickleweed, and 
pickleweed alone, respectively. This confirms the uncertainty associated with identifying areas 
transitional between pickleweed and mangrove forest. 

4.2. Thematic Classification 

We obtained a land cover map from the classification algorithm by use of the maximum probability 
classification rule (Figure 4). The validation provided from the use of independent training samples 
showed good overall reliability (84.10%). Discrimination of the pickleweed category was the poorest, 
with a commission error of 33% (sensitivity = 0.822; specificity = 0.670; see Table 4). Discrimination 
of the very shallow water category was best, with a commission error of only 4%. The classification 
model had an omission error of 13% for the mangrove category (sensitivity = 0.871), but classification 
of the mangrove forest involved some transition areas between pickleweed and mangrove forest that 
were incorrectly classified, resulting in a commission error of 23% (specificity = 0.770). 

The area occupied by each category was: mangrove forest 488 km2, mangrove forest with 
pickleweed 228 km2, pickleweed 257 km2, scattered vegetation 428 km2, bare soil 949 km2, very 
shallow water 108 km2, and open water 2,350 km2 (Figure 5). Our results indicate that pickleweed 
areas bordered upon mangrove forest areas (see Figure 4), suggesting a gradual transition between 
these two types of vegetation. Pickleweed has a high salt tolerance, and occurs in areas along channels 
where natural berms have formed from sedimentation, and in high marsh plains. Both of these areas 
have saline soils because of water evaporation in summer and limited freshwater inflow [2,50]. 

Figure 4. Land cover map based on supervised classification using the maximum 
likelihood method and the maximum probability classification rule. 
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Table 4. Confusion matrix between categories (proportion and total number of pixels), 
omission errors, commission errors, sensitivity, and specificity. 

  
Observed 

categories 

Mangrove 

forest 

Mangrove 

forest with 

pickleweed 

Pickleweed 
Scattered 

vegetation 

Bare 

soil 

Very 

shallow 

water 

area 

Open 

water 

area 

Total 

(pixels) 

Commission 

error (%) 
Specificity 

  

Pr
ed

ic
te

d 
ca

te
go

rie
s 

Mangrove forest 0.87 0.09 0.08 0.00 0.00 0.06 0.01 95 23 0.770 

Mangrove forest 

with pickleweed 
0.03 0.75 0.1 0.00 0.00 0.00 0.01 36 14 0.860 

Pickleweed 0.10 0.16 0.82 0.02 0.05 0.00 0.00 52 33 0.670 

Scattered 

vegetation 
0.00 0.00 0.00 0.86 0.11 0.00 0.00 132 11 0.890 

Bare soil 0.00 0.00 0.00 0.12 0.84 0.00 0.00 264 12 0.880 

Very shallow water 

area 
0.00 0.00 0.00 0.00 0.00 0.80 0.04 12 4 0.960 

Open water area 0.00 0.00 0.00 0.00 0.00 0.14 0.94 78 14 0.860 

         Total 15.86 0.841 

 Omission error (%) 0.13 0.25 0.18 0.14 0.16 0.20 0.06 0.16   

  Sensitivity 0.871 0.750 0.822 0.860 0.836 0.800 0.940 0.840   

Figure 5. Estimated coverage (km2) of each category in the study area. 

 

4.3. Maps of Mangrove and Non-Mangrove Areas 

The land cover classification (described above) confirmed the validity of the spectral categories 
determined during the supervised phase. Thus, we identified mangrove and non-mangrove areas by use 
of the spectral distance to the mangrove category map (Figure 6). The spectral distance map is an 
intermediate requirement in the process of supervised classification, and is used to assign each pixel to 
the category of greatest similarity (least spectral distance). 

However, the main focus of our study was on the mangrove category, and we thus obtained a more 
precise result using the map of spectral distance in conjunction with a user-determined classification 
threshold. Spectral distance, as determined by the maximum likelihood method, does not employ linear 
or Euclidean distance between the centers of spectral signatures. Rather, spectral distance is based on 
the variance/covariance matrix of all spectral signatures, and thus provides a much more precise 
distance statistic [38]. 
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Figure 6. Spectral distance map (UD: digital units) of the mangrove class in relation to 
other classes. 

 

The ROC curve for the mangrove area had a medium-to-high discrimination capacity (Figure 7). 
This curve shows the sensitivities and specificities associated with different possible values of the 
classification threshold. Determination of the classification threshold requires a compromise between 
sensitivity and specificity, because both cannot be maximized simultaneously. Thus, a highly sensitive 
classification threshold (i.e., with a very low omission error) is associated with moderate specificity, 
and will lead to overestimation of wetland areas. An underestimation of wetland areas would be 
obtained using a highly specific threshold. 

Thus, we selected a model with a high specificity (0.900, equivalent to selection of a confidence 
level α = 0.1) to minimize commission errors (false positives). For the spatial discrimination of  
non-mangrove areas, a classification threshold value was chosen that resulted in approximately equal 
values for sensitivity (0.723) and specificity (0.710). 

We applied both classification thresholds to the map of spectral distance for the mangrove category, 
and produced maps for mangrove and non-mangrove areas (Figure 8). The maps show that the 
mangrove area was 466 km2 and the non-mangrove area 4,357 km2. The mangrove area was slightly 
lower than that from the land cover map generated by the maximum likelihood classification method 
(see Figures 4 and 8), but our newer model had a higher specificity. 
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Figure 7. ROC curve for classification of mangrove areas. The diagonal dashed line 
represents a model with no predictive ability. Greater deviation of the ROC curve from this 
diagonal indicates greater discriminatory capacity of the model. U1 and U2 indicate the 
classification thresholds selected for assessment of mangrove and non-mangrove areas, 
respectively. 

 

Figure 8. Maps of mangrove and non-mangrove areas obtained from the spectral distance 
map and the classification threshold. 

 



Remote Sens. 2011, 3                            
 

1580

5. Conclusions 

This study has demonstrated the utility of RS data in basic and applied research to classify 
mangrove ecosystems at a regional scale (10–10,000 km2) in the Gulf of California of northwestern 
Mexico. The use of a supervised classification method using the maximum likelihood algorithm with a 
set of a priori categories allowed us to reliably map mangrove areas. Selection of training areas 
enabled identification of areas in each category based on maximum variability of spectral signatures. 
The use of an independent set of randomly selected pixels allowed validation of the classification 
model (84% overall accuracy). 

We used an ROC curve to assess uncertainty in the classification model (based on omission and 
commission errors), allowing the classification of thresholds for mangrove and non-mangrove areas. 
The main advantages of this methodology are that it allows precise determination of uncertainties 
involved in classification, and permits selection of a classification threshold according to the 
uncertainty level assumed for a specific application. Our method indicated that 466 km2 of the total 
surface area was occupied by mangrove forests, whereas the supervised maximum likelihood method 
estimated this area as 488 km2. This suggests a high degree of uncertainty in the spectral signatures of 
pixels separating mangrove forest from other categories. In particular, pickleweed areas bordering 
mangrove forest may have constituted transition zones between non-mangrove areas and mangrove 
areas, where soil is poorly covered by vegetation (approximately 50% cover). 

Finally, we believe that to reduce uncertainty in the identification of mangrove areas and to prepare 
reliable geographic inventories, it is necessary to compare results from independent research groups 
who all work with the same dataset and criteria, but employing various techniques. Comparison of 
such results will permit reduction in discrepancies and the production of Figures, with associated 
confidence intervals, that can be universally adopted. 

Acknowledgments 

This research was supported by the Mexican Secretary of Environment and Natural Resources 
(SEMARNAT) and the National Council for Science and Technology (CONACYT) by the grant 
SEMARNAT-2002-C01-0147. R. Sánchez-Andrés is granted by a CSIC-JAEDoc contract and L.C. 
Alatorre was supported by a scholarship from The National Council for Science and Technology of 
Mexico (CONACYT). 

References 

1. Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; 
O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. 
Nature 1997, 387, 253-260. 

2. Sánchez-Carrillo, S.; Sánchez-Andrés, R.; Alatorre, L.C.; Angeler, D.G.; Álvarez-Cobelas, M.; 
Arreola-Lizárraga, J.A. Nutrient fluxes in a semi-arid microtidal mangrove wetland in the Gulf of 
California. Estuar. Coast. Shelf Sci. 2009, 82, 654-662. 

3. Varnell, L.M.; Evans, D.A.; Havens, K.J. A geomorphological model of intertidal cove marshes 
with application to wetlands management. Ecol. Eng. 2003, 19, 339-347. 



Remote Sens. 2011, 3                            
 

1581

4. Lee, H.Y.; Shih, S.S. Impacts of vegetation changes on the hydraulic and sediment transport 
characteristics in Guandu mangrove wetland. Ecol. Eng. 2004, 23, 85-94. 

5. Willis, J.M.; Hester, M.W.; Shaffer, G.P. A mesocosm evaluation of processed drill cuttings for 
wetland restoration. Ecol. Eng. 2005, 25, 41-50. 

6. Lewis, R.R., III. Ecological engineering for successful management and restoration of mangrove 
forests. Ecol. Eng. 2005, 24, 403-418. 

7. Zhou, G. Influences of tropical forest changes on environmental quality in Hainan province, P.R. 
of China. Ecol. Eng. 1995, 4, 223-229. 

8. Blasco, F.; Saenger, P.; Janodet, E. Mangroves as indicators of costal change. Catena 1996, 27, 
167-178. 

9. Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 
2001, 40, 81-251. 

10. Dahdouh-Guebas, F.; Mathenge, C.; Kairo, J.G.; Koedam, N. Utilization of mangrove wood 
products around Mida Creek (Kenya) amongst subsistence and commercial users. Econ. Bot. 
2000, 54, 513-527. 

11. Ruiz-Luna, A.; Acosta-Velázquez, J.; Berlanga-Robles, C.A. On the reliability of the data of the 
extent of mangroves: A case study in Mexico. Ocean Coast. Manag. 2008, 51, 342-351. 

12. Ruiz-Luna, A.; Berlanga-Robles, C.A. Land use, land cover changes and coastal lagoon surface 
reduction associated with urban growth in northwest Mexico. Landsc. Ecol. 2003, 18, 159-171. 

13. Spalding, M.D.; Blasco, F.; Field, C.D. World Mangrove Atlas; The International Society for 
Mangrove Ecosystems: Okinawa, Japan, 1997; p. 178. 

14. Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 
29, 331-349. 

15. Aizpuru, M.; Achard, F.; Blasco, F. Global Assessment of Cover Change of the Mangrove Forest 
Using Satellite Imagery at Medium to High Resolution; EEC Research Project No 15017-1999-05 
FIED ISP FR; Joint Research Center: Ispra, Italy, 2000. 

16. Blasco, F.; Aizpuru, M. Mangroves along the coastal stretch of the Bay of Bengal: Present status. 
Indian J. Mar. Sci. 2002, 31, 9-20. 

17. Gao, J. A comparative study on spatial and spectral resolutions of satellite data mapping in 
mangrove forests. Int. J. Remote Sens. 1999, 20, 2823-2833. 

18. Haito, H.; Bellan, M.F.; Al-Habshi, A.; Aizpuru, M.; Blasco, F. Mangrove research and coastal 
ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in the Arabian Gulf. Int. J. Remote 
Sens. 2003, 24, 4073-4092. 

19. Rasolofoharinoro, M.; Blasco, F.; Bellan, M.F.; Aizpuru, M.; Gauquelin, T.; Denis, J. A remote 
sensing based methodology for mangrove studies in Madagascar. Int. J. Remote Sens. 1998, 19, 
1873-1886. 

20. Green, E.; Mumby, P. Mapping mangroves. In Remote Sensing Handbook for Tropical Coastal 
Management; Edwards, A.J., Ed.; UNESCO: Paris, France, 2000; pp. 183-198. 

21. Green, E.P.; Mumby, P.; Clark, C.D.; Mumby, P.J.: Edwards, A.J.; Ellis, A.C. Remote sensing 
techniques for mangrove mapping. Int. J. Remote Sens. 1998, 19, 935-956. 

22. Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D.; Ellis, A.C. The assessment of mangrove 
area using high resolution multispectral airborne imagery. J. Coast. Res. 1998, 14, 433-443. 



Remote Sens. 2011, 3                            
 

1582

23. Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D.; Ellis, A.C. Estimating leaf area index of 
mangroves from satellite data. Aquat. Bot. 1997, 58, 11-19. 

24. Jensen, J.R.; Ramsey, E.; Davis, B.A.; Thoemke, C.W. The measurement of mangrove 
characteristics in south-west Florida using SPOT multispectral data. Geocarto Int. 1991, 2, 13-21. 

25. Ramsey, E.W., III; Jensen, J.R. Remote sensing of mangrove wetlands: Relating canopy spectra 
to site-specific data. Photogramm. Eng. Remote Sensing 1996, 62, 939-948. 

26. Allison, M.A.; Lee, M.T. Sediment exchange between Amazon mudbanks and shore-fringing 
mangroves in French Guiana. Mar. Geol. 2004, 208, 169-190. 

27. Bird, M.; Chua, S.; Fifield, L.K.; Teh, T.S.; Lai, J. Evolution of the Sungei Buloh-Kranji 
mangrove coast, Singapore. Appl. Geogr. 2004, 24, 181-198. 

28. Chen, T.S. A remote sensing imagery analysis for the Tatu esturary. Endem. Species Res. 2002, 4, 
61-74. 

29. Fromard, F.; Vega, C.; Proisy, C. Half a century of dynamic coastal change affecting mangrove 
shorelines of French Guiana. A case study based on remote sensing data analyses and field 
surveys. Mar. Geol. 2004, 208, 265-280. 

30. Nakamura, F.; Kameyama, S.; Mizugaki, S. Rapid shrinkage of Kushiro Mire, the largest mire in 
Japan, due to increased sedimentation associated with land-use development in the catchment. 
Catena 2004, 55, 213-229. 

31. Wang, Z.M.; Zhang, B.; Zhang, S.Q.; Li, X.Y.; Liu, D.W.; Song, K.S.; Li, J.P.; Li, F.; Duan, H.T. 
Changes of land use and of ecosystem service values in Sanjiang Plain, Northeast China. Environ. 
Monit. Assess. 2006, 112, 69-91. 

32. Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.J.; Chen, J.K.; Nakagoshi, N. An ecosystem service value 
assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139-148. 

33. Murray, M.R.; Zisman, S.A.; Furley, P.A.; Munro, D.M.; Gibson, J.; Ratter, J.; Bridgewater, S.; 
Minty, C.D.; Place, C.J. The mangroves of Belize: Part 1. Distribution, composition and 
classification. For. Ecol. Manag. 2003, 174, 265-279. 

34. Ramírez-García, P.; López-Blanco, J.; Ocaña, D. Mangrove vegetation assessment in the Santiago 
River Mouth, Mexico, by means of supervised classification using Landsat TM imagery. For. 
Ecol. Manag. 1998, 105, 217-229. 

35. Blasco, F.; Aizpuru, M.; Din Ndongo, D. Mangroves, Remote Sensing. In Encyclopedia of 
Coastal Science; Schwartz, M.L., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2005; 
pp. 614-617.  

36. Soto-Jimenez, M.F.; Paez-Osuna, F. Distribution and normalization of heavy metal concentration 
in mangrove and lagoonal sediments from Mazatlan Harbor (SE Gulf of California). Estuar. 
Coast. Shelf Sci. 2001, 53, 259-274. 

37. Ruiz-Luna, A.; Berlanga-Robles, C.A. Modifications in Coverage Patterns and Land Use around 
the Huizache-Caimanero Lagoon System, Sinaloa, Mexico: A Multi-temporal Analysis using 
LANDSAT Images. Estuar. Coast. Shelf Sci. 1999, 49, 37-44. 

38. Alatorre, L.C.; Beguería, S. Identification of eroded areas using remote sensing in a badlands 
landscape on marls in the central Spanish Pyrenees. Catena 2009, 76, 182-190. 



Remote Sens. 2011, 3                            
 

1583

39. Yoda, K.; Kira, T.; Ogawa, H.; Hozumi, K. Intraspecific competition among higher plants. IX. 
Self-thinning in overcrowded pure stands under cultivation and natural conditions. J. Biol. 1963, 
14, 107-109. 

40. Palá, V.; Pons, X. Incorporation of relief in polynomial-based geometric corrections. 
Photogramm. Eng. Remote Sensing 1996, 61, 935-944. 

41. INEGI. National Institute of Statistic and Geography, Mexico. Available online: 
www.inegi.gob.mx (accessed on 18 July 2011). 

42. Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the 
satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 
35, 675-686. 

43. Vicente-Serrano, S.M.; Peréz-Cabello, F.; Lasanta, T. Assessment of radiometric correction 
techniques in analyzing vegetation variability and change using time series of Landsat images. 
Remote Sens. Environ. 2008, 112, 3916-3934. 

44. Cintron, G.; Lugo, A.E.; Pool, D.J.; Morris, G. Mangroves of arid environments in Puerto Rico 
and adjacent islands. Biotropica 1978, 10, 110-121. 

45. Beguería, S. Identifying erosion areas at basin scale using remote sensing data and GIS. Int. J. 
Remote Sens. 2006, 20, 4585-4598. 

46. Beguería, S. Validation and evaluation of predicitive models in hazard assessment and risk 
management. Nat. Hazards 2006, 37, 315-329. 

47. Deleo, J.M. Receiver Operating Characteristic Laboratory (ROCLAB): Software for Developing 
Decision Strategies that Account for Uncertainty. In Proceedings of the Second International 
Symposium on Uncertainty Modelling and Analysis, College Park, MD, USA, 25–28 April 1993; 
pp. 318-325. 

48. Fawcett, T. An introduction to ROC analysis. Pattern Recog. Lett. 2006, 27, 861-874. 
49. Ripple, W.J. Landsat Thematic Mapper bands for characterizing fescue grass vegetation. Int. J. 

Remote Sens. 1985, 8, 1373-1384. 
50. Onuf, C.P. Aspects of the biology of Salicornia Bigelovil Torr. in relation to a proposed 

restoration of a wind-tidal flat system on the south Texas, USA coast. Wetlands 2006, 26, 649-666. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


